Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834204

RESUMO

In recent years, Solution Blow Spinning (SBS) has emerged as a new technology for the production of polymeric, nanocomposite, and ceramic materials in the form of nano and microfibers, with similar features to those achieved by other procedures. The advantages of SBS over other spinning methods are the fast generation of fibers and the simplicity of the experimental setup that opens up the possibility of their on-site production. While producing a large number of nanofibers in a short time is a crucial factor in large-scale manufacturing, in situ generation, for example, in the form of sprayable, multifunctional dressings, capable of releasing embedded active agents on wounded tissue, or their use in operating rooms to prevent hemostasis during surgical interventions, open a wide range of possibilities. The interest in this spinning technology is evident from the growing number of patents issued and articles published over the last few years. Our focus in this review is on the biomedicine-oriented applications of SBS for the production of nanofibers based on the collection of the most relevant scientific papers published to date. Drug delivery, 3D culturing, regenerative medicine, and fabrication of biosensors are some of the areas in which SBS has been explored, most frequently at the proof-of-concept level. The promising results obtained demonstrate the potential of this technology in the biomedical and pharmaceutical fields.


Assuntos
Sistemas de Liberação de Medicamentos , Nanofibras , Polímeros , Bandagens , Tecnologia
2.
Adv Mater ; 35(48): e2303993, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572026

RESUMO

Implementing proteins in optoelectronics represents a fresh idea toward a sustainable new class of materials with bio-functions that can replace environmentally unfriendly and/or toxic components without losing device performance. However, their native activity (fluorescence, catalysis, and so on) is easily lost under device fabrication/operation as non-native environments (organic solvents, organic/inorganic interfaces, and so on) and severe stress (temperature, irradiation, and so on) are involved. Herein, a gift bow genetically-encoded macro-oligomerization strategy is showcased to promote protein-protein solid interaction enabling i) high versatility with arbitrary proteins, ii) straightforward electrostatic driven control of the macro-oligomer size by ionic strength, and iii) stabilities over months in pure organic solvents and stress scenarios, allowing to integrate them into classical water-free polymer-based materials/components for optoelectronics. Indeed, rainbow-/white-emitting protein-based light-emitting diodes are fabricated, attesting a first-class performance compared to those with their respective native proteins: significantly enhanced device stabilities from a few minutes up to 100 h keeping device efficiency at high power driving conditions. Thus, the oligomerization concept is a solid bridge between biological systems and materials/components to meet expectations in bio-optoelectronics, in general, and lighting schemes, in particular.


Assuntos
Iluminação , Polímeros , Fluorescência , Solventes
3.
Front Plant Sci ; 14: 1180688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206971

RESUMO

Many studies have shown the capacity of soil humic substances (HS) to improve plant growth in natural ecosystems. This effect involves the activation of different processes within the plant at different coordinated molecular, biochemical, and physiological levels. However, the first event triggered by plant root-HS interaction remains unclear. Some studies suggest the hypothesis that the interaction of HS with root exudates involves relevant modification of the molecular conformation of humic self-assembled aggregates, including disaggregation, which might be directly involved in the activation of root responses. To investigate this hypothesis, we have prepared two humic acids. A natural humic acid (HA) and a transformed humic acid obtained from the treatment of HA with fungal laccase (HA enz). We have tested the capacity of the two humic acids to affect plant growth (cucumber and Arabidopsis) and complex Cu. Laccase-treatment did not change the molecular size but increased hydrophobicity, molecular compactness and stability, and rigidity of HA enz. Laccase-treatment avoided the ability of HA to promote shoot- and root-growth in cucumber and Arabidopsis. However, it does not modify Cu complexation features. There is no molecular disaggregation upon the interaction of HA and HA enz with plant roots. The results indicate that the interaction with plant roots induced in both HA and laccase-treated HA (HA enz), changes in their structural features that showed higher compactness and rigidity. These events might result from the interaction of HA and HA enz with specific root exudates that can promote intermolecular crosslinking. In summary, the results indicate that the weakly bond stabilized aggregated conformation (supramolecular-like) of HA plays a crucial role in its ability to promote root and shoot growth. The results also indicate the presence of two main types of HS in the rhizosphere corresponding to those non-interacting with plant roots (forming aggregated molecular assemblies) and those produced after interacting with plant root exudates (forming stable macromolecules).

4.
Sci Total Environ ; 892: 163899, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37211128

RESUMO

Soil organic matter is considered by soil scientists as the interlayer that connect alive with mineral sides of the soil. In addition, microorganisms have in soil organic matter a source of carbon as well as a source of energy. We can observe a duality that can be analyzed from a biological, physicochemical, or even thermodynamic sense. From this last point of view carbon cycle follows its evolution on burial soil, and under certain temperature and pression conditions, up to fossil fuels or coals through kerogen being humic substances the ending point of biologically linked structures. When biological aspects are minimized, physicochemical aspects are maximized and carbonaceous structures are a source of energy but resilient to microorganism actions. Under these premises, we have isolated, purified, and analyzed different humic fractions. Heat of combustion of these humic fractions here analyzed reflects this situation and fitted the list of evolution stage of carbonaceous materials that step by step accumulates energy. Theoretical value of this parameter calculated from studied humic fractions, and by combination of its biochemical macromolecules yielded an exaggerated value in comparison to the real and measured value indicating a complexity of these humic structures, more than simpler molecules. Heat of combustion and excitation-emission matrices by fluorescence spectroscopy of isolated and purified grey and brown humic materials revealed different values for each fraction. Grey fractions showed a higher heat of combustion values and shorter λexc/λem, whereas brown fractions showed a lower heat of combustion and a larger λexc/λem. These data together with previous chemical analysis indicated a deep structural differentiation that can be observed by the Pyrolysis MS-GC data of the studied samples. Authors hypothesized that this incipient distinction between aliphatic and aromatic cores could evolve independently up to fossil fuel on one hand and coals on the other hand but separately.


Assuntos
Substâncias Húmicas , Solo , Solo/química , Substâncias Húmicas/análise , Espectrometria de Fluorescência , Temperatura , Carbono/análise , Ciclo do Carbono , Combustíveis Fósseis , Carvão Mineral/análise
5.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555759

RESUMO

Gemfibrozil (GEM) is a hypolipidemic agent, which is effective in reducing serum cholesterol and triglyceride levels. Complexation of GEM with native ß-cyclodextrin (ß-CD) and with the derivatives hydroxypropyl-ß- and randomly methylated ß-CD (HPß-CD and Meß-CD) was studied in aqueous solution of pH 2.8 and 7.0. The stability constants were determined by spectrofluorimetry, 1H-NMR spectroscopy and solubility assays. Considering the well-known difficulties to obtain similar stability constants by different techniques, the agreement of the values obtained supports the reliability of the results presented. The advantages and drawbacks of each analytical technique for the study of inclusion complexation were discussed as well. In addition, the thermodynamic parameters of complexation, enthalpy (ΔH) and entropy (ΔS), were determined and related to the type of molecular interactions that take place between GEM and the different cyclodextrins. Finally, solid dispersions were prepared by co-evaporation, kneading, vacuum desiccation, and coprecipitation, and complexation was evaluated by X-ray diffraction.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Genfibrozila , 2-Hidroxipropil-beta-Ciclodextrina , Reprodutibilidade dos Testes , beta-Ciclodextrinas/química , Ciclodextrinas/química , Solubilidade , Difração de Raios X
6.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362431

RESUMO

Collagen-based polymers and their blends have attracted considerable interest for new materials development due to their unique combination of biocompatibility, physical and mechanical properties and durability. Leather, a modified natural biopolymer made from animal rawhide and the first synthetic collagen-based polymer known since the dawn of civilization, combines all these features. Rawhide is transformed into leather by tanning, a process in which the collagen is cross-linked with different agents to make it stronger and more durable and to prevent its decay. Research on the development of environmentally friendly procedures and sustainable materials with higher efficiency and lower costs is a rapidly growing field, and leather industry is not an exemption. Chrome-tanned and vegetable-tanned (chromium-free) shavings from the leather industry present a high content of organic matter, yet they are considered recalcitrant waste to be degraded by microbiological processes like anaerobic digestion (AD), a solid technology to treat organic waste in a circular economy framework. In this technology however, the solubilisation of organic solid substrates is a significant challenge to improving the efficiency of the process. In this context, we have investigated the process of microbial decomposition of leather wastes from the tannery industry to search for the conditions that produce optimal solubilisation of organic matter. Chrome-tanned and chromium-free leather shavings were pre-treated and anaerobically digested under different temperature ranges (thermophilic-55 °C-, intermediate-42 °C- and mesophilic-35 °C) to evaluate the effect on the solubilisation of the organic matter of the wastes. The results showed that the presence of chromium significantly inhibited the solubilization (up to 60%) in the mesophilic and intermediate ranges; this is the fastest and most efficient solubilization reached under thermophilic conditions using the chromium-free leather shaving as substrates. The most suitable temperature for the solubilization was the thermophilic regime (55 °C) for both chromium-free and chrome-tanned shavings. No significant differences were observed in the thermophilic anaerobic digestion of chromium-free shavings when a pre-treatment was applied, since the solubilisation was already high without pre-treatment. However, the pre-treatments significantly improved the solubilisation in the mesophilic and intermediate configurations; the former pre-treatment was better suited in terms of performance and cost-effectiveness compared to the thermophilic range. Thus, the solubilisation of chromium-free tannery solid wastes can be significantly improved by applying appropriate pre-treatments at lower temperature ranges; this is of utter importance when optimizing anaerobic processes of recalcitrant organic wastes, with the added benefit of substantial energy savings in the scaling up of the process in an optimised circular economy scenario.


Assuntos
Resíduos Industriais , Curtume , Animais , Cromo/química , Temperatura , Anaerobiose , Colágeno
7.
Polymers (Basel) ; 14(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406174

RESUMO

The relationship between processing conditions, structure and morphology are key issues to understanding the final properties of materials. For instance, in the case of polymers to be used as scaffolds in tissue engineering, wound dressings and membranes, morphology tuning is essential to control mechanical and wettability behaviors. In this work, the relationship between the processing conditions of the solution blow spinning process (SBS) used to prepare nonwoven mats of polyethylene oxide (PEO), and the structure and morphology of the resulting materials are studied systematically, to account for the thermal and mechanical behaviors and dissolution in water. After finding the optimal SBS processing conditions (air pressure, feed rate, working distance and polymer concentration), the effect of the solvent composition has been considered. The structure and morphology of the blow spun fibers are studied as well as their thermal, mechanical behaviors and dissolution in water. We demonstrate that the morphology of the fibers (size and porosity) changes with the solvent composition, which is reflected in different thermal and mechanical responses and in the dissolution rates of the materials in water.

8.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054867

RESUMO

Pseudopolyrotaxanes (PPRs) are supramolecular structures consisting of macrocycles able to thread on a linear polymer chain in a reversible, non-covalent way, often referred to in the literature as "molecular necklaces". While the synthesis and reaction mechanisms of these structures in solution have been widely described, their solvent-free production has received little attention, despite the advantages that this route may offer. We propose in this work a kinetic mechanism that describes the PPR formation in the solid phase as a process occurring in two consecutive stages. This mechanism has been used to investigate the spontaneous formation of a PPR that occurs when grinding α-Cyclodextrin (α-CD) with polyethylene glycol (PEG). In the threading stage, the inclusion of the polymer and subsequent release of the water molecules lodged in the cavity of the macrocycle cause vibrational changes that are reflected in the time-dependence of the FTIR-ATR spectra, while the further assembly of PPRs to form crystals produces characteristic reflections in the XRD patterns, due to the channel-like arrangement of CDs, that can be used to track the formation of the adduct in crystalline form. The effects that working variables have on the kinetics of the reaction, such as temperature, feed ratio, molar mass of the polymer and the introduction of an amorphous block in the polymer structure, have been investigated. The rate constants of the threading step increase with the temperature and the activation energy of the process increases at lower proportions of CD to PEG. This is attributed to the lower degree of covering of the polymer chain with CDs that reduces the hydrogen-bonding driven stabilization between adjacent macrocycles. The formation of crystalline PPR, which takes place slowly at room temperature, is markedly promoted at higher temperatures, with lower proportions of CD favoring both the formation and the growth of the crystals. The molar mass of the polymer does not modify the typical channel-like arrangement of packed PPRs but the conversion into crystalline PPR diminishes when using PEG1000 instead of PEG400. At a microscopic level, the crystals arrange into lamellar structures, in the order of hundreds of nm, embedded in an amorphous-like matrix. The introduction of a polypropylene oxide block in the structure of the polymer (Pluronic L62) renders poorer yields and a considerable loss of crystallinity of the product of the reaction. The methodology here proposed can be applied to the general case of inclusion complexes of CDs with drugs in the solid phase, or to multicomponent systems that contain polymers as excipients in pharmaceutical formulations along with CDs.


Assuntos
Ciclodextrinas/química , Poloxâmero/química , Polietilenoglicóis/química , Rotaxanos/química , Solventes/química , Cristalização , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , alfa-Ciclodextrinas/química
9.
Biomolecules ; 11(7)2021 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-34356608

RESUMO

Anti-microbial peptides (AMPs), small biologically active molecules, produced by different organisms through their innate immune system, have become a considerable subject of interest in the request of novel therapeutics. Most of these peptides are cationic-amphipathic, exhibiting two main mechanisms of action, direct lysis and by modulating the immunity. The most commonly reported activity of AMPs is their anti-bacterial effects, although other effects, such as anti-fungal, anti-viral, and anti-parasitic, as well as anti-tumor mechanisms of action have also been described. Their anti-parasitic effect against leishmaniasis has been studied. Leishmaniasis is a neglected tropical disease. Currently among parasitic diseases, it is the second most threating illness after malaria. Clinical treatments, mainly antimonial derivatives, are related to drug resistance and some undesirable effects. Therefore, the development of new therapeutic agents has become a priority, and AMPs constitute a promising alternative. In this work, we describe the principal families of AMPs (melittin, cecropin, cathelicidin, defensin, magainin, temporin, dermaseptin, eumenitin, and histatin) exhibiting a potential anti-leishmanial activity, as well as their effectiveness against other microorganisms.


Assuntos
Antiprotozoários/uso terapêutico , Leishmania/crescimento & desenvolvimento , Leishmaniose , Proteínas Citotóxicas Formadoras de Poros/uso terapêutico , Animais , Humanos , Leishmaniose/tratamento farmacológico , Leishmaniose/metabolismo , Leishmaniose/patologia , Malária/tratamento farmacológico , Malária/metabolismo , Malária/patologia
10.
Mater Sci Eng C Mater Biol Appl ; 121: 111876, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33579499

RESUMO

Device-Associated Healthcare-Associated Infections (DA-HAI) are a major threat to public health worldwide since they are associated with increased hospital stays, morbidity, mortality, financial burden, and hospital overload. A strategy to combat DA-HAI involves the use of medical devices endowed with surfaces that can kill or repel pathogens and prevent biofilm formation. We aimed to develop low-toxic protease-resistant anti-biofilm surfaces that can sensitize drug-resistant bacteria to sub-inhibitory concentrations of antibiotics. To this end, we hypothesized that polymyxin B nonapeptide (PMBN) could retain its antibiotic-enhancing potential upon immobilization on a biocompatible polymer, such as silicone. The ability of PMBN-coated silicone to sensitize a multidrug-resistant clinical isolate of Pseudomonas aeruginosa (strain Ps4) to antibiotics and block biofilm formation was assessed by viable counting, confocal microscopy and safranin uptake. These assays demonstrated that covalently immobilized PMBN enhances not only antibiotics added exogenously but also those incorporated into the functionalized coating. As a result, the functionalized surface exerted a potent bactericidal activity that precluded biofilm formation. PMBN-coated silicone displayed a high level of stability and very low cytotoxicity and hemolytic activity in the presence of antibiotics. We demonstrated for the first time that an antibiotic enhancer can retain its activity when covalently attached to a solid surface. These findings may be applied to the development of medical devices resistant to biofilm formation.


Assuntos
Preparações Farmacêuticas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Silicones
11.
J Colloid Interface Sci ; 582(Pt A): 353-363, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32858401

RESUMO

HYPOTHESIS: The combination of polymeric surfactants into mixed micelles is expected to improve properties relevant to their use in drug delivery, such as micellar size, gelation, and toxicity. We investigated synergistic effects in mixtures of D-α-Tocopheryl polyethylene glycol succinate (TPGS), an FDA-approved PEGylated derivative of vitamin E, and Tetronic surfactants, pH-responsive and thermogelling polyethylene oxide (PEO)-polypropylene oxide (PPO) 4-arm block copolymers. We hypothesized that mixed micelles would form under specific conditions and provide a handle to tune formulation characteristics. EXPERIMENTS: We examined the morphology of the self-assembled structures in mixtures of TPGS with two Tetronic: T1107 and T908, using a combination of dynamic light scattering (DLS), small-angle neutron scattering (SANS), NMR spectroscopy (NOESY and diffusion NMR) and oscillatory rheology, over a range of compositions, temperatures and pH. Cell viability was assessed in NIH/3T3 fibroblasts. FINDINGS: The combination of TPGS with either of the two Tetronic produces spherical core-shell micelles that comprise both surfactants in their structure (mixed micelles). T1107 unimers incorporate into TPGS aggregates below the critical micelle temperature of the poloxamine, while mixed micelles only form under limited conditions with T908. At high concentration/temperature, small proportions of TPGS extend the gel phase, more markedly with T1107, with similar elastic moduli (30-50 kPa) and a BCC crystalline structure. Cell viability of NIH/3T3 fibroblasts grown in the hydrogels increases significantly when the poloxamine gels are doped with TPGS, making the combination of poloxamines and TPGS a promising platform for drug delivery.


Assuntos
Micelas , Vitamina E , Polietilenoglicóis , alfa-Tocoferol
12.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260948

RESUMO

Aspirin (ASA) has attracted wide interest of numerous scientists worldwide thanks to its chemopreventive and chemotherapeutic effects, particularly in colorectal cancer (CRC). Incorporation of selenium (Se) atom into ASA has greatly increased their anti-tumoral efficacy in CRC compared with the organic counterparts without the Se functionality, such as the promising antitumoral methylseleno-ASA analog (1a). Nevertheless, the efficacy of compound 1a in cancer cells is compromised due to its poor solubility and volatile nature. Thus, 1a has been formulated with native α-, ß- and γ-cyclodextrin (CD), a modified ß-CD (hydroxypropyl ß-CD, HP-ß-CD) and Pluronic F127, all of them non-toxic, biodegradable and FDA approved. Water solubility of 1a is enhanced with ß- and HP- ß-CDs and Pluronic F127. Compound 1a forms inclusion complexes with the CDs and was incorporated in the hydrophobic core of the F127 micelles. Herein, we evaluated the cytotoxic potential of 1a, alone or formulated with ß- and HP- ß-CDs or Pluronic F127, against CRC cells. Remarkably, 1a formulations demonstrated more sustained antitumoral activity toward CRC cells. Hence, ß-CD, HP-ß-CD and Pluronic F127 might be excellent vehicles to improve pharmacological properties of organoselenium compounds with solubility issues and volatile nature.


Assuntos
Antineoplásicos/uso terapêutico , Aspirina/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Aspirina/química , Aspirina/farmacologia , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Células HT29 , Humanos , Micelas , Poloxâmero/química , Espectroscopia de Prótons por Ressonância Magnética , Solubilidade , Espectrometria de Fluorescência , Água/química , beta-Ciclodextrinas/química
13.
Int J Pharm ; 588: 119664, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32736021

RESUMO

Photocatalytic properties of titanium dioxide nanoparticles (TiO2 NPs) have encouraged their use as fillers in polymer-based nanocomposites for application in food packaging. The surface modification of TiO2 NPs with cyclodextrins (CDs) can improve their functionality in a large extent. With this purpose, sorbic acid (SA) and benzoic acid (BA), commonly used as antifungal and antibacterial food preservatives, respectively, have been encapsulated in CD-grafted NPs. Inclusion complex formation of SA and BA with α and ßCDs in water has been assessed first by means of 1H NMR and UV-Vis spectroscopy to determine the affinity of the preservatives for the macrocycles and the stoichiometry of the complexes. The association constants of both preservatives were found to be lower for ßCD, however, the loading efficiency in ßCD-grafted NPs was higher than that exhibited by αCD-NPs. Release kinetics from the CD-grafted NPs have been carried out. In the case of SA, the αCD-grafted NPs showed a prolonged and sustained release profile, suggesting its application as microbial growth inhibition system if incorporated into packaging materials.


Assuntos
Anti-Infecciosos/química , Ácido Benzoico/química , Conservantes de Alimentos/química , Nanopartículas Metálicas , Ácido Sórbico/química , Titânio/química , alfa-Ciclodextrinas/química , beta-Ciclodextrinas/química , Difusão , Embalagem de Alimentos , Conservação de Alimentos , Cinética , Propriedades de Superfície
14.
Mol Pharm ; 17(7): 2354-2369, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32352791

RESUMO

Gram-negative bacteria possess numerous defenses against antibiotics, due to the intrinsic permeability barrier of their outer membrane (OM), explaining the recalcitrance of some common and life-threatening infections. We report the formulation of a new drug, PPA148, which shows promising activity against all Gram-negative bacteria included in the ESKAPEE pathogens. PPA148 was solubilized by inclusion complexation with cyclodextrin followed by encapsulation in liposomes. The complex and liposomal formulation presented increased activity against E. coli compared to the pure drug when assessed with the Kirby Bauer assay. The novel formulation containing 1 µg PPA148 reached similar efficacy levels equivalent to those of 30 µg of pure rifampicin. A range of biophysical techniques was used to explore the mechanism of drug uptake. Langmuir trough (LT) and neutron reflectivity (NR) techniques were employed to monitor the interactions between the drug and the formulation with model membranes. We found evidence for liposome fusion with the model Gram-negative outer membrane and for cyclodextrins acting as inner membrane (IM) permeation enhancers without presenting intrinsic antimicrobial activity. An antibiotic-in-cyclodextrin-in-liposomes (ACL) formulation was developed, which targets both the bacterial OM and IM, and offers promise as a means to breach the Gram-negative cell envelope.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Membrana Externa Bacteriana/metabolismo , Benzodiazepinas/administração & dosagem , Benzodiazepinas/farmacocinética , Ciclodextrinas/química , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Escherichia coli/metabolismo , Pirróis/administração & dosagem , Pirróis/farmacocinética , Antibacterianos/química , Membrana Externa Bacteriana/efeitos dos fármacos , Benzodiazepinas/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Bicamadas Lipídicas/metabolismo , Lipossomos , Fusão de Membrana , Modelos Biológicos , Pirróis/química , Rifampina/farmacologia , Solubilidade
15.
Int J Pharm ; 578: 119057, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-31991188

RESUMO

Miltefosine (MF), an alkylphospholipid originally developed for breast cancer treatment, is a highly active drug for the treatment against leishmaniasis, a neglected tropical disease considered the world's second leading cause of death by a parasitic agent after malaria. MF exhibits dose-limiting gastrointestinal side effects in patients and its penetration through lipophilic barriers is reduced. In this work we propose a reformulation of MF by incorporating the drug to poly(ethylene)oxide (PEO)-based polymeric micelles, specifically, D-α-tocopheryl polyethylene glycol succinate (TPGS) and Tetronic block copolymers (T904 and T1107). A full structural characterization of the aggregates has been carried out by SANS (small-angle neutron scattering) and dynamic light scattering (DLS), in combination with proton 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, to determine the precise location of the drug. The structure of MF micelles has been characterized as a function of the temperature and concentration. In the presence of the block-copolymers, MF forms mixed micelles in a wide range of temperatures, TPGS being the co-surfactant that incorporates more MF unimers. The hydrophobic tail of MF and those of the block copolymers are in close contact within the micelles, which present a core-shell structure with a hydrophilic corona formed by the PEG blocks of the TPGS and the zwitterion head group of the MF. In order to identify the best carrier, the antileishmanicidal activity of MF in the different formulations has been tested on macrophages, promastigotes and intracellular amastigotes. The combination of the three vehicles with MF makes the formulated drug more active than MF alone against L. major promastigotes, however, only the combination with T904 increases the MF activity against intracellular amastigotes. With the aim of exploring gel-based formulations of the drug, the combination of MF and T1107 under gelation conditions has also been investigated.


Assuntos
Antiprotozoários/administração & dosagem , Portadores de Fármacos/administração & dosagem , Etilenodiaminas/administração & dosagem , Leishmania major/efeitos dos fármacos , Micelas , Fosforilcolina/análogos & derivados , Vitamina E/administração & dosagem , Animais , Antiprotozoários/química , Portadores de Fármacos/química , Difusão Dinâmica da Luz , Etilenodiaminas/química , Macrófagos/parasitologia , Camundongos , Estrutura Molecular , Nanopartículas/administração & dosagem , Nanopartículas/química , Fosforilcolina/administração & dosagem , Fosforilcolina/química , Análise Espectral , Vitamina E/química
16.
Langmuir ; 34(36): 10591-10602, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30095271

RESUMO

Polypseudorotaxanes are polymer chains threaded by molecular rings that are free to unthread; these "pearl-necklace" can self-assemble further, leading to higher-order supramolecular structures with interesting functionalities. In this work, the complexation between α-cyclodextrin (α-CD), a cyclic oligosaccharide of glucopyranose units, and poly(ethylene glycol) (PEG) grafted to silica nanoparticles was studied. The threading of α-CD onto the polymeric chains leads to their aggregation into bundles, followed by either the precipitation of the inclusion complex or the formation of a gel phase, in which silica nanoparticles are incorporated. The kinetics of threading, followed by turbidimetry, revealed a dependence of the rate of complexation on the following parameters: the concentration of α-CD, temperature, PEG length (750, 4000, and 5000 g mol-1), whether the polymer is grafted or free in solution, and the density of grafting. Complexation is slower, and temperature has a higher impact on PEG grafted on silica nanoparticles compared to PEG free in solution. Thermodynamic parameters extracted from the transition-state theory showed that inclusion complex formation is favored with grafted PEG compared to free PEG and establishes a ratio of complexation of five to six ethylene oxide units per cyclodextrin. The complexation yields, determined by gravimetry, revealed that much higher yields are obtained with longer chains and higher grafting density. Thermogravimetric analysis and Fourier transform infrared spectroscopy on the inclusion complex corroborate the number of macrocycles threaded on the chains. A sol-gel transition was observed with the longer PEG chain (5k) at specific mixing ratios; oscillatory shear rheology measurements confirmed a highly solid-like behavior, with an elastic modulus G' of up to 25 kPa, higher than that in the absence of silica. These results thus provide the key parameters dictating inclusion complex formation between cyclodextrin and PEG covalently attached to colloidal silica and demonstrate a facile route toward soft nanoparticle gels based on host-guest interactions.

17.
Nanomaterials (Basel) ; 8(9)2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30131472

RESUMO

The modification of the surface of titanium dioxide nanoparticles (TiO2 NPs) by the incorporation of cyclodextrins (CDs), cyclic oligosaccharides with a hydrophobic cavity, can largely improve the functionality of TiO2 by lodging molecules of interest in the CD to act directly on the surface of the nanoparticles or for further release. With this aim, we have synthesized ßCD-modified nanoparticles (ßCDTiO2 NPs) by a two-step reaction that involves the incorporation of a spacer and then the linking of the macrocycle, and characterized them by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The capacity of the functionalized structures to trap model compounds (Rhodamine and 1-naphthol) has been compared to that of bare TiO2 NPs by fluorescence and Ultraviolet-visible (UV-visible) spectroscopy. The presence of the CDs on the surface of the TiO2 avoids the photo-degradation of the guest, which is of interest in order to combine the photocatalytic activity of TiO2, one of its most interesting features for practical purposes, with the delivery of compounds susceptible of being photo-degraded. The ßCDTiO2 NPs have been dispersed in polymeric matrices of frequently used polymers, polyethylene (LDPE) and polyethylene oxide (PEO), by cryogenic high energy ball milling to produce nanocomposites in the form of films. The surface modification of the nanoparticles favors the homogenization of the filler in the matrix, while the nanoparticles, either in bare or functionalized form, do not seem to alter the crystallization properties of the polymer at least up to a 5% (w/w) load of filler.

18.
Colloids Surf B Biointerfaces ; 170: 463-469, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29960214

RESUMO

Selenium (Se) incorporated into organic frameworks has demonstrated anticancer activity against several cancer types. One of the drawbacks of most of these constructs is their poor solubility and bioavailability, which can be overcome with the use of suitable nanocarriers. We have synthesized a series of 5-substituted amide selenodiazoles, based on the parent structure of ebselen, an organoselenium drug with proven cytoprotective activity, and solubilized them in polymeric micelles of poloxamines, poly(ethylene oxide)-poly(propylene oxide) X-shaped tetrablock-copolymers. Scattering methods (SANS and DLS) were employed to characterize the micellar nanocarriers. MTT biological evaluation highlights the selectivity of the Se-compounds towards cancer cells, with MCF-7 standing as the most responsive line. The alkylation of the heterocycle with a 12-carbon hydrophobic tail displays the highest activity, showing a 100-fold increase with respect to ebselen. This compound also exhibits the greatest increase in solubility in poloxamine micelles, overall resulting in a one-fold increase in activity with respect to the non-formulated form, making it a hit compound for further optimization.


Assuntos
Antineoplásicos/farmacologia , Azóis/farmacologia , Etilenodiaminas/farmacologia , Micelas , Compostos de Selênio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Azóis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Etilenodiaminas/química , Humanos , Estrutura Molecular , Tamanho da Partícula , Compostos de Selênio/síntese química , Compostos de Selênio/química , Relação Estrutura-Atividade , Propriedades de Superfície
19.
J Colloid Interface Sci ; 524: 42-51, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29631218

RESUMO

Tetronics are X-shaped block-copolymers of polyethylene oxide and polypropylene oxide, which self-assemble into micelles and can undergo a sol-gel transition; these transitions are dependent on temperature, concentration but also pH, due to the central diamine group of the tetrablock. We report the nanoscale morphologies underlying these different phases and the rheology of the systems for a very large, highly hydrophilic block copolymer, Tetronic 908, through the combined use of oscillatory rheology, steadyblock-state and time-resolved fluorescence, small-angle neutron scattering (SANS), dynamic light scattering (DLS) and Fourier transform infrared attenuated total reflectance (FTIR-ATR). At low concentrations, SANS reveal core-shell micelles of ca. 10 nm radius, presenting a dehydrated core and a highly hydrated shell, with relatively small aggregation numbers (Nagg ≈ 13). The micelles are notably affected by the pH, due to the protonation of the central amine spacer at low pH (pH ≈ 2), which shifts micellization to higher temperature, with smaller micelles than at natural pH. In the intermediate concentration regime (10-15%), micelles become smaller (Nagg ≈ 5), and present a higher hydration of the core. In the high concentration regime, Tetronic 908 undergoes a sol-gel transition above a threshold temperature, which is fully inhibited at acidic pH. SANS data from the gel phase reveal a BCC order of tightly packed spheres. Temperature sweeps in oscillatory rheology show a shift of the onset of gelation towards lower temperatures as concentration increases, an increase in the elastic modulus G' and an expansion of gel region over a larger range of temperatures. SANS and rheology reveal that at pH below the natural pH (ca. 8), gelation is shifted to higher temperatures, but the morphology of the gels is similar, while under highly acidic conditions the gelation is fully suppresed.

20.
Nanomaterials (Basel) ; 8(2)2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29364193

RESUMO

In this work, the antimicrobial effect of silver nanoparticles in polyethylene based nanocomposites has been investigated using a non-conventional processing method to produce homogeneous materials. High energy ball milling under cryogenic conditions was used to achieve a powder of well-blended low-density polyethylene and commercial silver nanoparticles. The final composites in the form of films were obtained by hot pressing. The effect of various silver nanoparticles content (0, 0.5, 1 and 2 wt %) on the properties of low-density polyethylene and the antimicrobial effectiveness of the composite against DH5α Escherichia coli were studied. The presence of silver nanoparticles did not seem to affect the surface energy and thermal properties of the materials. Apart from the inhibition of bacterial growth, slight changes in the aspect ratio of the bacteria with the content of particles were observed, suggesting a direct relationship between the presence of silver nanoparticles and the proliferation of DH5α E. coli (Escherichia coli) cells. Results indicate that these materials may be used to commercially produce antimicrobial polymers with potential applications in the food and health industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA